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➢ Separable Filter Kernels  

➢ As noted, a 2-D function G(x,y) is said to be separable if it can be written

as the product of two 1-D functions, G1(x) and G2(x); that is,

G(x,y)= G1(x) G2(x) 

➢ A spatial filter kernel is a matrix, and a separable kernel is a matrix that

can be expressed as the outer product of two vectors. For example, the 2*3

kernel

𝑤 =
1 1 1
1 1 1
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➢ Separable Filter Kernels  

➢ is separable because it can be expressed as the outer product of the vectors

➢ That is,

𝑐𝑟𝑇 =
1
1

1 1 1 =
1 1 1
1 1 1

= 𝑤

Dr/ Ayman Soliman

𝑤 =
1 1 1
1 1 1

𝑐 =
1
1

and 𝑟 =
1
1
1
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➢ Separable Filter Kernels 

➢ A separable kernel of size m × n can be expressed as the outer product of

two vectors, v and w:

𝑤 = 𝑉𝑊𝑇

Where v and w are vectors of size m × 1 and n × 1, respectively.

➢ For a square kernel of size m×m , we write

𝑤 = 𝑉𝑉𝑇

➢ It turns out that the product of a column vector and a row vector is the

same as the 2-D convolution of the vectors

Dr/ Ayman Soliman
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➢ Separable Filter Kernels 

➢ The importance of separable kernels lies in the computational advantages

that result from the associative property of convolution.

➢ If we have a kernel w that can be decomposed into two simpler kernels,

such that w=w1* w2, then it follows from the commutative and associative

properties that

𝑤 ∗ 𝑓 = 𝑤1 ∗ 𝑤2 ∗ 𝑓 = 𝑤2 ∗ 𝑤1 ∗ 𝑓 = 𝑤2 ∗ 𝑤1 ∗ 𝑓 = 𝑤1 ∗ 𝑓 ∗ 𝑤2

➢ This equation says that convolving a separable kernel with an image is the

same as convolving w1 with f first, and then convolving the result with w2.

Dr/ Ayman Soliman
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➢ Separable Filter Kernels 
➢ For an image of size M × N and a kernel of size m × n , implementation of

Eq. 𝑤 ∗ 𝑓 𝑥, 𝑦 = σ𝑠=−𝑎
𝑎 σ𝑡=−𝑏

𝑏 𝑤 𝑠, 𝑡 𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)

requires on the order of MNmn multiplications and additions. This is because it follows

directly from that equation that each pixel in the output (filtered) image depends on all the

coefficients in the filter kernel.

But if the kernel is separable and we use Eq.

𝑤 ∗ 𝑓 = 𝑤1 ∗ 𝑤2 ∗ 𝑓 = 𝑤2 ∗ 𝑤1 ∗ 𝑓 = 𝑤2 ∗ 𝑤1 ∗ 𝑓 = 𝑤1 ∗ 𝑓 ∗ 𝑤2

then the first convolution, w1*f , requires on the order of MNm multiplications and additions

because w1 is of size m × 1.

Dr/ Ayman Soliman
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➢ Separable Filter Kernels 

➢ The result is of size M × N, so the convolution of w2 with the result requires 

MNn such operations, for a total of MN(m+n) multiplication and addition 

operations. 

➢ Thus, the computational advantage of performing convolution with a 

separable, as opposed to a non-separable, kernel is defined as

𝐶 =
𝑀𝑁(𝑚 + 𝑛)

𝑀𝑁𝑚𝑛
=
𝑚 + 𝑛

𝑚𝑛

➢ For kernels with hundreds of elements, execution times can be reduced by a 

factor of a hundred or more, which is significant.
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➢ Some Important Comparisons Between Filtering in the 

Spatial and Frequency Domains

➢ The tie between spatial and frequency domain processing is the Fourier

transform.

➢ We use the Fourier transform to go from the spatial to the frequency domain;

to return to the spatial domain we use the inverse Fourier transform.

Dr/ Ayman Soliman

(a) Ideal 1-D lowpass filter transfer

function in the frequency domain.

(b) Corresponding filter kernel in the 

spatial domain.



28/4/2022 10

➢ Some Important Comparisons Between Filtering in the 

Spatial and Frequency Domains

➢ The focus here is on two fundamental properties relating the spatial and

frequency domains:

1. Convolution, which is the basis for filtering in the spatial domain, is

equivalent to multiplication in the frequency domain, and vice versa.

2. An impulse of strength A in the spatial domain is a constant of value A in the

frequency domain, and vice versa.

Dr/ Ayman Soliman
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➢ How Spatial Filter Kernels are Constructed

➢ We consider Three basic approaches for constructing spatial filters.

➢ 1- The first approach is based on formulating filters based on

mathematical properties.

➢ For example, a filter that computes the average of pixels in a neighborhood

blurs an image. Computing an average is similar to integration.

➢ Conversely, a filter that computes the local derivative of an Image sharpens

the image.

Dr/ Ayman Soliman
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➢ How Spatial Filter Kernels are Constructed

➢ 2- The second approach is based on sampling a 2-D spatial function

whose shape has a desired property.

➢ For example, we will later show in the samples from a Gaussian function

can be used to construct a weighted-average (lowpass) filter.

➢ These 2-D spatial functions sometimes are generated as the inverse Fourier

transform of 2-D filters specified in the frequency domain.

Dr/ Ayman Soliman
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➢ How Spatial Filter Kernels are Constructed
➢ 3- The third approach is to design a spatial filter with a specified

frequency response.

➢ This approach is fallen in the area of digital filter design.

➢ A 1-D spatial filter with the desired response is obtained (typically using

filter design software).

➢ The 1-D filter values can be expressed as a vector v, and a 2-D separable

kernel can then be obtained using the equation 𝑤 = 𝑉𝑉𝑇. Or the 1-D filter

can be rotated about its center to generate a 2-D kernel that approximates a

circularly symmetric function.
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➢ Smoothing (Lowpass) Spatial Filters

➢ Smoothing (also called averaging) spatial filters are used to reduce sharp

transitions in intensity. Because random noise typically consists of sharp

transitions in intensity, an obvious application of smoothing is noise

reduction.

➢ Smoothing prior to image resampling to reduce aliasing, is also a common

application.

➢ Smoothing is used to reduce irrelevant detail in an image, where

“irrelevant” refers to pixel regions that are small with respect to the size of

the filter kernel.

Dr/ Ayman Soliman
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➢ Smoothing (Lowpass) Spatial Filters

➢ Smoothing filters are used in combination with other techniques for image

enhancement, such as the histogram processing techniques, and unsharp

masking, as discussed later.

Dr/ Ayman Soliman

smoothing filters 

linear nonlinear

➢ We begin the discussion of smoothing filters

by considering linear smoothing filters in

some detail.

➢ We will introduce nonlinear smoothing filters

later.
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➢ Smoothing (Lowpass) Spatial Filters

➢ As we discussed, linear spatial filtering consists of convolving an image

with a filter kernel.

➢ Convolving a smoothing kernel with an image blurs the image, with the

degree of blurring being determined by the size of the kernel and the

values of its coefficients.

➢ In addition to being useful in countless applications of image processing,

lowpass filters are fundamental, in the sense that other important filters,

including sharpening (high-pass), bandpass, and band-reject filters, can be

derived from lowpass filters.
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➢ Smoothing (Lowpass) Spatial Filters

➢ We discuss in this section lowpass filters based on box and Gaussian

kernels, both of which are separable.

➢ Most of the discussion will center on Gaussian kernels because of their

numerous useful properties and extensiveness of applicability.

Dr/ Ayman Soliman
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➢ Box Filter Kernels

➢ The simplest, separable lowpass filter kernel is the box kernel, whose

coefficients have the same value (typically 1).

➢ The name “box kernel” comes from a constant kernel resembling a box

when viewed in 3-D.

➢ We showed a 3×3 box filter in next Fig.(a). An m×n box filter is an m×n

array of 1’s, with a normalizing constant in front, whose value is 1 divided

by the sum of the values of the coefficients (i.e., 1/mn when all the

coefficients are 1’s).

Dr/ Ayman Soliman
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➢ Box Filter Kernels

Dr/ Ayman Soliman

(a) Test pattern of size 1024*1024  pixels.

(b)-(d) Results of lowpass filtering with box 

kernels of sizes 3*3, 11*11, and 21*21, 

respectively.
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➢ Box Filter Kernels

Dr/ Ayman Soliman

➢ Figure(a) shows a test pattern image of size 1024 × 1024 pixels.

➢ Figures (b)-(d) are the results obtained using box filters of size m × m with

m = 3, 11, and 21 respectively. For m = 3, we note a slight overall blurring

of the image, with the image features whose sizes are comparable to the

size of the kernel being affected significantly more.

➢ Such features include the thinner lines in the image and the noise pixels

contained in the boxes on the right side of the image. The filtered image

also has a thin gray border, the result of zero-padding the image prior to

filtering.
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➢ Box Filter Kernels

Dr/ Ayman Soliman

➢ As indicated earlier, padding extends the boundaries of an image to avoid

undefined operations when parts of a kernel lie outside the border of the image

during filtering.

➢ When zero (black) padding is used, the net result of smoothing at or near the

border is a dark gray border that arises from including black pixels in the

averaging process.

➢ Using the 11×11 kernel resulted in more pronounced blurring throughout the

image, including a more prominent dark border.
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➢ Box Filter Kernels

Dr/ Ayman Soliman

➢ The result with the 21 × 21 kernel shows significant blurring of all components

of the image, including the loss of the characteristic shape of some

components, including, for example, the small square on the top left and the

small character on the bottom left.

➢ The dark border resulting from zero padding is proportionally thicker than

before.

➢ We used zero padding here, and will use it a few more times, so that you can

become familiar with its effects.
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➢ Lowpass Gaussian Filter Kernels

➢ Because of their simplicity, box filters are suitable for quick

experimentation, and they often yield smoothing results that are visually

acceptable.

➢ They are useful also when it is desired to reduce the effect of smoothing on

edges.

➢ However, box filters have limitations that make them poor choices in many

applications. For example, a defocused lens is often modeled as a lowpass

filter, but box filters are poor approximations to the blurring characteristics

of lenses.

Dr/ Ayman Soliman
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➢ Lowpass Gaussian Filter Kernels

➢ Another limitation is the fact that box filters favor blurring along

perpendicular directions.

➢ In applications involving images with a high level of detail, or with strong

geometrical components, the directionality of box filters often produces

undesirable results.

➢ These are but two applications in which box filters are not suitable.

Dr/ Ayman Soliman



28/4/2022 25

➢ Lowpass Gaussian Filter Kernels
➢ The kernels of choice in applications such as those just mentioned are

circularly symmetric (also called isotropic, meaning their response is

independent of orientation). As it turns out, Gaussian kernels of the form

𝑤 𝑠, 𝑡 = 𝐺 𝑠, 𝑡 = 𝐾𝑒−
𝑠2 + 𝑡2

2𝛔2

are the only circularly symmetric kernels that are also separable.

Thus, because Gaussian kernels of this form are separable, Gaussian filters enjoy

the same computational advantages as box filters but have a host of additional

properties that make them ideal for image processing.

Dr/ Ayman Soliman
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➢ Lowpass Gaussian Filter Kernels

➢ Variables s and t in last Eq. , are real (typically discrete) numbers.

➢ By letting 𝑟 = 𝑠2 + 𝑡2 we can write last equation as

𝐺 𝑟 = 𝐾𝑒
−
𝑟2

2𝛔2

➢ This equivalent form simplifies derivation of expressions later in this

lecture.

➢ This form also reminds us that the function is circularly symmetric.

Variable r is the distance from the center to any point on function G.

Dr/ Ayman Soliman
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➢ Lowpass Gaussian Filter Kernels

➢ Figure shows values of r for

several kernel sizes using

integer values for s and t.

➢ Because we work generally

with odd kernel sizes, the

centers of such kernels fall on

integer values, and it follows

that all values of r2 are integers

also.
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➢ Lowpass Gaussian Filter Kernels

(a)A test pattern of size 1024 × 1024. (b) Result of lowpass filtering the pattern with a

Gaussian kernel of size 21 × 21, with standard deviations 𝛔 = 3.5. (c) Result of using a

kernel of size 43 × 43 , with 𝛔 = 7. We used K = 1 in all cases.
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➢ Lowpass Gaussian Filter Kernels

Result of filtering the test pattern in Fig. using (a) zero padding, (b) mirror padding, and

(c) replicate padding. A Gaussian kernel of size 187 × 187 , with K = 1 and 𝛔 = 31 was

used in all three cases.
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➢ Smoothing performance as a function of kernel and image size.

(a) Test pattern of size 4096 × 4096 pixels. (b) Result of filtering the test pattern with

the same Gaussian kernel used in last Fig. (c) Result of filtering the pattern using a

Gaussian kernel of size 745 × 745 elements, with K = 1 and 𝛔 = 124.

Mirror padding was used throughout.
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